Robust DNA Microarray Clustering Techniques for Oncological Diagnosis

نویسنده

  • Robert Beverly
چکیده

Machine learning techniques are increasingly popular tools for understanding complex biological data. Prior research has demonstrated the power of simple statistical clustering algorithms for disease class discovery and prediction. In this work we examine the efficacy of spectral and divisive clustering on gene expression microarray data. In particular we consider simultaneous expression clustering for diagnostically challenging problems such as tumor subclass classification and prediction. We compare spectral and divisive clustering methods against existing cancer classification datasets. Divisive clustering is notably non-parametric, enumerating an estimate of true class count. Using these two clustering methods, we demonstrate a 50-60% prediction error reduction over earlier results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modification of the Fast Global K-means Using a Fuzzy Relation with Application in Microarray Data Analysis

Recognizing genes with distinctive expression levels can help in prevention, diagnosis and treatment of the diseases at the genomic level. In this paper, fast Global k-means (fast GKM) is developed for clustering the gene expression datasets. Fast GKM is a significant improvement of the k-means clustering method. It is an incremental clustering method which starts with one cluster. Iteratively ...

متن کامل

به کارگیری روش‌های خوشه‌بندی در ریزآرایه DNA

Background: Microarray DNA technology has paved the way for investigators to expressed thousands of genes in a short time. Analysis of this big amount of raw data includes normalization, clustering and classification. The present study surveys the application of clustering technique in microarray DNA analysis. Materials and methods: We analyzed data of Van’t Veer et al study dealing with BRCA1...

متن کامل

Robust fuzzy clustering algorithms in analyzing high-dimensional cancer databases

Due to uncertainty value of objects in microarray gene expression high dimensional cancer database, finding available subtypes of cancers is considered as challenging task. Researchers have invented mathematical assisted clustering techniques in clustering relevant gene expression of cancer subtypes, but the techniques have failed to provide proper outcome results with less error. Hence, it is ...

متن کامل

An Unsupervised Learning Scheme for DNA Microarray Image Spot Detection

DNA microarrays are novel and powerful techniques, which are used to analyze the expression level of DNA, and have many applications in pharmacology, medical diagnosis, environmental engineering, and biological sciences. The process of separating the background from the foreground is a crucial stage in DNA microarray data analysis, since it substantially affects the subsequent stages. Quite a f...

متن کامل

Spot detection and image segmentation in DNA microarray data.

Following the invention of microarrays in 1994, the development and applications of this technology have grown exponentially. The numerous applications of microarray technology include clinical diagnosis and treatment, drug design and discovery, tumour detection, and environmental health research. One of the key issues in the experimental approaches utilising microarrays is to extract quantitat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007